Crystal Structure of the F27G AIM2 PYD Mutant and Similarities of Its Self-Association to DED/DED Interactions

Alvin Lu, Venkataraman Kabaleeswaran, Tianmin Fu, Venkat Giri Magupalli and Hao Wu

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA

Correspondence to Hao Wu: hao.wu@childrens.harvard.edu
http://dx.doi.org/10.1016/j.jmb.2013.12.029
Edited by Y. Shi

Abstract

Absent in melanoma 2 (AIM2) is a cytoplasmic double-stranded DNA sensor involved in innate immunity. It uses its C-terminal HIN domain for recognizing double-stranded DNA and its N-terminal pyrin domain (PYD) for eliciting downstream effects through recruitment and activation of apoptosis-associated Speck-like protein containing CARD (ASC). ASC in turn recruits caspase-1 and/or caspase-11 to form the AIM2 inflammasome. The activated caspases process proinflammatory cytokines IL-1β and IL-18 and induce the inflammatory form of cell death pyroptosis. Here we show that AIM PYD (AIM2PYD) self-oligomerizes. We notice significant sequence homology of AIM2PYD with the hydrophobic patches of death effector domain (DED)-containing proteins and confirm that mutations on these residues disrupt AIM2PYD self-association. The crystal structure at 1.82 Å resolution of such a mutant, F27G of AIM2PYD, shows the canonical six-helix (H1–H6) bundle fold in the death domain superfamily. In contrast to the wild-type AIM2PYD structure crystallized with the large maltose-binding protein tag, the H2–H3 region of the AIM2PYD F27G is well defined with low B-factors. Structural analysis shows that the conserved hydrophobic patches engage in a type I interaction that has been observed in DED/DED and other death domain superfamily interactions. While previous mutagenesis studies of PYDs point to the involvement of charged interactions, our results reveal the importance of hydrophobic interactions in the same interfaces. These centrally localized hydrophobic residues within fairly charged patches may form the hot spots in AIM2PYD self-association and may represent a common mode of PYD/PYD interactions in general.

© 2014 Elsevier Ltd. All rights reserved.
inflammasomes [5–9]. They lack the NACHT domain found in NLRs and directly bind to double-stranded DNA, a trigger associated with microbial invasion, though a C-terminal HIN domain [10].

The NLRP3, NLRP6, NLRP7, and NLRP12 inflammasomes and the AIM2 and IFI16 inflammasomes require the bipartite adaptor molecule, ASC, which contains an N-terminal pyrin domain (PYD) followed by a C-terminal caspase recruitment and activation domain (CARD). ASC is recruited by homotypic PYD/PYD interaction with the activated upstream sensor. Oligomerization of the sensor molecules, either through oligomerization of the NACHT domain in NLRs [2,11] or through release of an auto-inhibition mechanism in ALRs [10,12], initiates inflammasome assembly. To date, several PYD monomeric structures have been solved using crystallography and NMR. These include the solution structure of ASCPYD [13], full length (ASCFL) [14], NALP1PYD [15], ASC2 [16], NLRP10PYD [17], NLRP2PYD [18], NLRP12PYD [19], NALP3PYD [20], and MINDAPYD. While our paper was in preparation, the crystal structure of wild-type (WT) AIM2PYD as a fusion protein to maltose-binding protein (MBP) was also reported [12].

PYD belongs to the death domain (DD) superfamily, which also includes two other subfamilies—CARD and death effector domain (DED) [21]. Many PYDs also oligomerize, in addition to interactions with other PYD-containing proteins. This property is observed in DD signalosomes such as the MyDDosome and PIDDosome complexes [22,23]. In other cases, these homotypic complexes can form extensive cytosolic signaling filaments, such as the DED filaments of caspase-8 centered at the known conserved hydrophobic patches of DEDs (Fig. 1a). In particular, the sequence homology placed F27 of AIM2 as the homologous residue for the surface-exposed F25 of FADD, which has been shown to be important for apoptosis induction [25]. While F25W and F25Y essentially maintained the activity of WT FADD, F25G and F25V are almost completely compromised in the cell death induction function. The mutations on F25 disrupted FADD self-association [26] and rendered the proteins monomeric [25]. They also compromised the ability of FADD to interact with the FLICE-inhibitory protein c-FLIP, a caspase-8-like protein [27]. In the tandem DED structure of a viral caspase-8-like protein known as the v-FLIP MC159 from the poxvirus Molluscum contagiosum virus, the F25-analogous residue in the similar hydrophobic patch of the first DED (DED1, F30) interacts with the second DED (DED2) to form a rigid dumbbell-shaped structure [28,29]. In caspase-8, the analogous single-site F122G mutant exhibited weakened interaction with FADD, while the double mutant, F122G and L123G, completely abolished its interaction with FADD [28].

To determine if F27 of AIM2PYD also impacts its solubility and aggregation solution behavior, we generated the F27Y, F27L, F27W, and F27G mutants on the His-Sumo-AIM2PYD construct. All mutations caused the proteins to shift to the monomeric fraction, at least to some extent (Fig. 1b). The more conserved substitutions F27W and F27Y showed a mixture of aggregated and monomeric proteins, while the F27L mutant is mostly monomeric and the F27G mutant is completely monomeric. Upon removal of the Sumo tag, the F27G AIM2PYD mutant showed solubility greater than 20 mg/ml. These data suggest that F27 is involved in self-association of AIM2PYD.

Based on the definition of the three types of asymmetric interactions that have been observed in the DD fold superfamily [21,30], F27 resides on a type lb surface. Modeling and sequence alignment revealed that the corresponding type la surface likely includes residues L10 and L11 on the predicted helix H1 (Fig. 1a). In previously reported interactions in the DD superfamily, the type la and the type lb surfaces form a conserved asymmetric interaction pair [21]. Indeed, the mutant L10A/L11A of AIM2PYD also showed almost all monomeric species (Fig. 1c), revealing that both type la and type lb surfaces are involved in AIM2 self-association. Both the type la and the type lb residues are also conserved among the different PYDs (Fig. 1d), suggesting that the type I interaction may be a common feature in PYD/PYD interactions.

AIM2PYD form ordered filaments in vitro and in cells

To assess whether AIM2PYD forms ordered aggregates, we first used negative-stain electron microscopy to examine purified His-Sumo-AIM2PYD, which elutes in the void position of a Superdex 200 column (Fig. 1b). The protein showed filamentous morphology (Fig. 2a). To confirm that AIM2PYD also forms ordered aggregates in cells, we transiently transfect...
full length, PYD domain, and HIN domain of AIM2 in fusion to eGFP at the C-terminus (AIM2FL-eGFP, AIM2PYD-eGFP, and AIM2HIN-eGFP). Confocal microscopy showed that, while both AIM2FL-eGFP and AIM2PYD-eGFP formed filamentous structures, AIM2HIN-eGFP did not, suggesting that PYD is responsible for the ordered aggregation (Fig. 2b).

We further transiently transfected in HeLa cells AIM2PYD WT and type I interface mutants identified above, as fusions to C-terminal mCherry. Confocal microscopy images showed filamentous aggregates for WT, F27Y, and F27W AIM2PYD-mCherry, while F27G, F27L, and L10A/L11A AIM2PYD-mCherry distributed throughout the cells (Fig. 2c). These cellular data correlate well with migration positions in gel-filtration chromatography (Fig. 1b). Together, they suggest that bulky hydrophobic residues at the predicted type I interface are essential for filament formation.

Crystal structure of the F27G AIM2 PYD mutant

We set up the F27G mutant of AIM2PYD (residues 1-100) and obtained initial crystals that diffracted to ~4 Å resolution. With the use of in situ proteolysis with trypsin, needle clusters grew within 3 days at 4ºC under the same condition with improved resolution to ~1.8 Å (Fig. 3a). The structure was determined using molecular replacement in the program MOLREP [31]. A composite of several PYD structures was used as the search model because of the low sequence identity of AIM2PYD to any known PYD structures. Model building and refinement at 1.82 Å was carried out using Coot [32] and PHENIX [33] (Supplementary Table 1). The final atomic coordinates comprise one residue from the vector and AIM2PYD residues M1 to K93. It is likely that trypsin cleaved the C-terminal tail off at residue K93. This C-terminal region is involved in crystal packing and the cleavage must have facilitated crystal growth.

The structure revealed a six-helical bundle structure composed of helices H1–H6, which is conserved in the DD fold superfamily [21] (Fig. 3b). Mutation to Gly at F27 did not dramatically alter the structure; it only created a minor kink in helix H2 (Fig. 3c). In comparison with the WT AIM2PYD structure that was crystallized as a fusion to N-terminal MBP [12], helix H2 in the F27G mutant is in fact longer (Fig. 3d and e). Most conspicuously, in the published WT AIM2PYD structure, the H2–H3 region is highly disordered with high B-factors that go up to ~120 Å² while...
the remainder of the residues show B-factors of ~20–40 Å2 (Fig. 3f). In contrast, in our high-resolution F27G mutant AIM2$^{\text{PYD}}$ structure, this region is ordered and well defined; the B-factors of residues in this region fall within the average B-factor of 18.7 Å2 in the whole protein chain (Fig. 3f and Supplementary Table 1). The protein conformation in the H2–H3 region is quite different in the WT and the F27G AIM2$^{\text{PYD}}$ (Fig. 3e), suggesting that the ordered F27G mutant provides a clearer structure of this region of AIM2. In comparison with the WT structure, the F27G AIM2$^{\text{PYD}}$ structure shows differences in secondary structure boundaries (Fig. 4a), offering an additional view on the intrinsic conformational flexibility of the molecule.

Modeled AIM2 PYD/PYD interaction: hydrophobic interactions may comprise the functional epitope

The locations of F27 on a type Ib surface and L10 on a type Ia surface, as well as the monomeric phenotypes of mutations on these residues, suggest that AIM2$^{\text{PYD}}$ oligomerizes through a type I interface. Consistent with this observation, residues L10 and L11 are positioned adjacent to the fusion partner MBP in the WT AIM2$^{\text{PYD}}$ structure [12] (Fig. 3g). Therefore, MBP would inhibit the type I interaction of AIM2$^{\text{PYD}}$ in the fusion protein, explaining how MBP inhibits AIM2$^{\text{PYD}}$ aggregation.

We generated a PYD/PYD interaction model by superimposing AIM2$^{\text{PYD}}$ onto a type I interaction pair in the MyDDosome [21,30] (Fig. 4b). It has been proposed previously that AIM2$^{\text{PYD}}$ interacts with ASC$^{\text{PYD}}$ mainly through charge–charge interactions [12]. Previous extensive mutagenesis on ASC$^{\text{PYD}}$ also suggested the involvement of charged interactions in ASC self-association and interaction with other PYD proteins such as NLRP3 and ASC2 [14,34,35]. In our model of the type I interaction in AIM2$^{\text{PYD}}$ oligomerization, both the F27-containing and the L10/L11-containing surfaces are highly charged (Fig. 4c and d), consistent with these existing data.

In addition to charge interactions, it has also been proposed that hydrophobic surfaces may be involved in the interactions mediated by AIM2$^{\text{PYD}}$ [12]. Here we
observe that the hydrophobic residues F27 and L10 appear to reside in the center of the charged patches and are likely the major contributors of the interactions. The data provide additional structural and energetic insights because the strength of the hydrophobic interaction may be further enhanced by the local charges surrounding it. In addition, previous detailed mutational studies on protein–protein interfaces have shown that the buried hydrophobic contacts at the center of an interface may be responsible for a majority of the interfacial binding energy [36]. Therefore, the hydrophobic residues in AIM2PYD self-association may represent the hot spot or the functional epitope in the interaction, which has been mostly overlooked and not emphasized in the existing literature.

Structural similarities between PYDs and DEDs

In addition to the local sequence homology with DEDs (Fig. 1a), AIM2PYD was also unexpectedly much more similar in structure to canonical DEDs, such as
Fig. 4. Sequence and structural comparisons of AIM2PYD. (a) Sequence alignment among AIM2PYD from different species, with secondary structures from the F27G structure (pink) and the WT structure (blue). (b) An AIM2PYD/AIM2PYD type I interaction model based on the MyDDosome structure. The interaction residues F27, L10, and L11 are shown as red sticks. (c and d) Ribbon and electrostatic diagrams of the AIM2PYD surfaces containing F27 (c) and L10/L11 (d), respectively. (e) Superposition between AIM2PYD (yellow) and MC159 DED2 (pink).
DED of FADD [25] and DED2 of v-FLIP [28], than to CARDs and DDs. A Dali structural homology search [37] found that the top hits are all PYD or DED structures (Supplementary Table 2 and Fig. 4e). This observation is in keeping with a phylogenetic analysis of DD superfamily, which suggests that DED and PYD share common ancestors with PYD derived latest in the evolution of these domains [38]. Therefore, the structural and evolutionary features dictate the similarities between DEDs and PYDs.

Acknowledgements

We thank the staff scientists at beamlines X25 and X29 of National Synchrotron Light Source for assistance with data collection.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jmb.2013.12.029.

Received 13 November 2013; Received in revised form 19 December 2013; Accepted 23 December 2013
Available online 7 January 2014

Keywords:
AIM2; PYD; interaction; inflammasome; DED

Abbreviations used:
AIM2, absent in melanoma 2; PYD, pyrin domain; DD, death domain; WT, wide-type; NLR, NOD-like receptor; MBP, maltose-binding protein.

References