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Abstract

Inflammasomes are supramolecular complexes that form in the 
cytosol in response to pathogen-associated and damage-associated 
stimuli, as well as other danger signals that perturb cellular 
homoeostasis, resulting in host defence responses in the form 
of cytokine release and programmed cell death (pyroptosis). 
Inflammasome activity is closely associated with numerous human 
disorders, including rare genetic syndromes of autoinflammation, 
cardiovascular diseases, neurodegeneration and cancer. In recent 
years, a range of inflammasome components and their functions 
have been discovered, contributing to our knowledge of the overall 
machinery. Here, we review the latest advances in inflammasome 
biology from the perspective of structural and mechanistic studies.  
We focus on the most well-studied components of the canonical 
inflammasome — NAIP–NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 —  
as well as caspase-4, caspase-5 and caspase-11 of the noncanonical 
inflammasome, and the inflammasome effectors GSDMD and 
NINJ1. These structural studies reveal important insights into how 
inflammasomes are assembled and regulated, and how they elicit  
the release of IL-1 family cytokines and induce membrane rupture  
in pyroptosis.
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regulation of NAIP–NLRC4 and NLRP3 inflammasomes, how autopro-
teolysis of NLRP1 and CARD8 enables their unique mode of activation 
and regulation, and how GSDMD and NINJ1 oligomerization in the 
membrane offers complementary mechanisms of cytokine release 
and membrane disruption. We do not discuss in depth several other 
important inflammasome sensors, including AIM2, pyrin and NLRP6. 
Structural studies on AIM2 are represented by earlier studies on its 
mode of interaction with double-stranded DNA (dsDNA)16 and on the 
pyrin domain (PYD)17–19. Although several structures exist for certain 
domains in pyrin20, and NLRP6 has been shown to form biomolecular 
condensates upon interaction with dsRNA and a bacterial cell wall 
component21, further structural studies are required to elucidate their 
mechanisms of action. Furthermore, although we do not discuss these 
in detail, the observed differences between human and rodent inflam-
masomes require additional investigation. The biological aspects of 
inflammasome functions in health and disease have been reviewed 
elsewhere22.

What makes an inflammasome?
Inflammasomes are defined as supramolecular complexes that activate 
inflammatory caspases; the canonical inflammasomes contain and acti-
vate caspase-1, and the noncanonical inflammasomes contain and 
activate caspase-4 and caspase-5 in humans and caspase-11 in mice23–28.  
Caspase-1, and now also caspase-4, have been shown to process IL-1 
family cytokines (such as IL-1β and IL-18) to their mature forms29–32. 
All inflammatory caspases (caspase-1, caspase-4, caspase-5 and cas-
pase-11) process GSDMD to induce membrane pore formation, which 
is responsible for releasing IL-1 family cytokines from the cell33–35 and, 
together with NINJ1, for inducing a highly inflammatory form of cell 
death known as pyroptosis36–45.

Inflammasomes carry out intracellular surveillance as part of the 
innate immune system by detecting danger signals that originate from 
invading microorganisms or from cellular stress or damage, defend-
ing the host and restoring cellular homoeostasis through the effects 
of pro-inflammatory cytokines and cell death28,46,47 (Fig. 1). Inflam-
masomes have been associated with numerous human diseases, from 
diseases of major organs, such as the heart, liver, kidney and lung, to 
infection, obesity, ageing and neuroinflammation48–53.

Canonical inflammasome components
Conceptually, the core proteins of the canonical inflammasome 
have three main roles: a sensor protein that is triggered by infectious 
or sterile danger signals resulting in its oligomerization, an adap-
tor protein that is recruited by the sensor upon activation, and the 
effector caspase-1 that executes downstream responses27,46 (Fig. 1). 
Inflammasome sensors are germline encoded. However, unlike other 
germline-encoded innate immune receptors such as Toll-like receptors 
(TLRs), which directly recognize pathogen-associated molecular pat-
terns (PAMPs) or damage-associated molecular patterns (DAMPs)54, 
only some inflammasome sensors, such as NAIP, AIM2 and NLRP6, 
directly interact with PAMPs or DAMPs. Other inflammasome sensors, 
such as NLRP1 and NLRP3, detect pathogen or damage signals indirectly 
from their resulting cellular perturbations, which may function to dis-
criminate between harmful and harmless stimuli without necessarily 
distinguishing non-self from self27.

Most inflammasome sensors belong to the NBD-containing 
and LRR-containing protein (NLR) family23,55, which comprises 
multi-domain proteins characterized by a central nucleotide-binding 
and oligomerization domain (the NACHT domain) that can bind 

Introduction
The discovery of cytosolic complexes known as inflammasomes, which 
promote the release of pro-inflammatory IL-1 family cytokines from 
cells, was a milestone event in our understanding of fever and inflam-
mation. This key discovery built on several previous findings, including 
cloning of the cDNAs for IL-1α and IL-1β in 1984, and the realization that 
the predicted IL-1α and IL-1β proteins are larger than those that were 
biochemically purified from macrophage supernatant and do not have 
signal sequences that would account for their secretion from cells1,2. 
Soon after, the amino-terminal sequence of mature IL-1β was reported3, 
confirming that a cleavage event is required for its generation. In 1992, 
the enzyme responsible for IL-1β cleavage was first reported as the IL-1β 
converting enzyme (ICE)4,5, later renamed caspase-1 — the first member  
of the caspase family of cysteine proteases that mediate apoptotic 
and inflammatory pathways6–8. In 2002, the pursuit for the molecular 
machinery that activates caspase-1 led to the identification of the first 
inflammasome — the nucleotide-binding domain (NBD)-containing, 
leucine-rich repeat (LRR)-containing and pyrin domain-containing 
protein 1 (NLRP1) inflammasome — by the group of the late J. Tschopp9.  
At the time, the NLRP1 inflammasome was shown as a protein complex con-
taining NLRP1, ASC (apoptosis-associated speck-like protein containing  
a caspase recruitment domain (CARD)), caspase-1 and caspase-5,  
but more recent data have revealed additional complexity (see below).

Rapid progress was made in the new field of inflammasomes in 
the subsequent years, with important clinical implications. It had 
previously been discovered that mutations in a relative of NLRP1 called 
cryopyrin (now known as NLRP3) caused a cluster of hereditary fever 
syndromes collectively referred to as cryopyrin-associated periodic 
syndromes (CAPS)10,11. The Tschopp group then showed that NLRP3 
assembles an inflammasome with increased activity in patients with 
CAPS12 or gout13, prompting trials of the IL-1 receptor antagonist anak-
inra in these patients. Anakinra provided immediate and effective relief 
to patients with acute gout flares14. Patients with CAPS also responded 
remarkably well to anakinra15, and IL-1-blocking agents have since 
remained the mainstay of the clinical management of CAPS.

These early studies defining the NLRP1 and NLRP3 inflammasomes 
and the first demonstration of CAPS as an inflammasome-driven human 
disease (an ‘inflammasomopathy’) paved the way for subsequent stud-
ies that characterized new inflammasome sensor molecules (for exam-
ple, neuronal apoptosis inhibitory protein (NAIP)–NBD-containing, 
LRR-containing and CARD-containing protein 4 (NLRC4), NLRP6, 
absent in melanoma 2 (AIM2), pyrin and CARD8), new inflammasome 
effector proteases (caspase-4, caspase-5 and caspase-11), new inflam-
masome substrates that orchestrate cell death and alarmin release 
(for example, gasdermins) or sculpt tissue immune responses (for 
example, IL-18 and IL-37), and, most recently, the role of ninjurin 1 
(NINJ1) in mediating final membrane rupture downstream of inflam-
masome activation (Fig. 1). In addition, a vast literature now documents 
hundreds of genetic and acquired inflammasomopathies, which has 
fuelled the development of next-generation, biologic IL-1 blockers  
for clinical use (rilonacept and canakinumab) and the preclinical  
and clinical development of small-molecule inhibitors of individual 
inflammasome components.

In this Review, we summarize our current understanding of the 
structures of inflammasome components and how these structures 
relate to their functions — focusing on NAIP–NLRC4, NLRP3, NLRP1, 
CARD8, gasdermin D (GSDMD) and NINJ1, for which recent discoveries 
make such review timely. These structures provide insights into how 
diverse protein conformational changes determine the assembly and 
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nucleotides (ADP or ATP) and participate in conformational changes 
and self-oligomerization upon activation. Twenty-two human 
NLRs are described, of which about nine are reported to assemble 
inflammasomes55. The NLRs are classified in subfamilies according 
to their amino-terminal domains: NLRPs (for example, human NLRP1, 
NLRP2, NLRP3, NLRP6, NLRP7, NLRP9, NLRP10 and NLRP12) have an 
N-terminal PYD, whereas NLRBs (also known as NAIPs, for example, 
human NAIP) have N-terminal baculoviral inhibitor of apoptosis repeat 
domains. The C-terminal domain of NLRs, with the exception of NLRP10 
and NLRP1, contains an LRR domain that senses ligands or cofac-
tors, or interacts with itself; the LRR domain for NLRP1 is in between 
domains, whereas NLRP10 lacks the LRR domain. Additional notable 
non-NLR inflammasome sensors are as follows: AIM2, which contains an 
N-terminal PYD and a C-terminal haematopoietic interferon-inducible 
nuclear (HIN) domain that binds cytosolic dsDNA56,57; pyrin (also known 
as marenostrin or TRIM20), which contains a PYD, a B-box-type zinc 
finger domain, a coiled-coil domain and a B30.2 (PRYSPRY) domain58; 
and CARD8, which contains a C-terminal CARD.

Upon ligand binding, resulting in activation and oligomeriza-
tion, NLRP3, NLRP6, AIM2 and pyrin all recruit the adaptor protein 
ASC through PYD–PYD interactions19,58–60 (Fig. 1). The structure of the 
ASC PYD filament was resolved in 2014 (ref. 61), and several other PYD 
filament structures were revealed subsequently, the latest in 2022 
(refs. 17,19,62–64), confirming their similar structural architectures. 
For example, the PYD of AIM2, which is autoinhibited by the HIN domain 
based on intramolecular electrostatic interactions18, is released by 
the interaction of the HIN domain with dsDNA from viral or bacterial 
infection16. It was modelled that HIN domains of multiple AIM2 mol-
ecules could wrap around dsDNA, positioning the linked PYDs on the 
HIN–dsDNA filament to recruit ASC17,19. In addition to a PYD, ASC also 
has a C-terminal CARD65 that recruits caspase-1 through CARD–CARD 
interactions66,67. It is now well established that both PYD–PYD and 
CARD–CARD interactions generate helical assemblies to mediate 
homo-oligomerization and hetero-oligomerization59,67. Thus, ASC 
bridges PYD-containing upstream sensors to the downstream effector 
caspase-1, forming an aggregate assembly known as the ‘ASC speck’ or 
the ‘inflammasome speck’68–70.

NLRP1 has a C-terminal CARD that recruits ASC via CARD–CARD 
interactions, and ASC in turn recruits caspase-1. By contrast, CARD8 
directly recruits and activates caspase-1 via CARD–CARD interac-
tions without requiring the adaptor ASC71,72. The NAIPs, upon activa-
tion by direct binding to bacterial ligands such as flagellin, recruit the 
CARD-containing adaptor protein NLRC4 through NACHT–NACHT 
interactions in which one NAIP molecule induces conformational 
change and polymerization of NLRC4 to form an inflammasome 
disc73–78 (Fig. 1). The CARD-containing NLRC4 can directly recruit and 
activate caspase-1 through CARD–CARD interactions for cell death 
induction, but recruitment of ASC is required for maximal pro-IL-1β 
processing by NAIP–NLRC4 inflammasomes74,75,79,80.

Activation of caspase-1
Caspase-1, which is the most well-studied of the inflammatory cas-
pases, is the effector protease of the canonical inflammasomes (Fig. 1). 
Caspase-1, together with the other inflammatory caspases, consists 
of an N-terminal CARD followed by a CARD domain linker (CDL) that 
connects the CARD to the protease domain. The protease domain is 
composed of large (~20 kDa) and small (~10 kDa) catalytic subdomains 
separated by an interdomain linker (IDL). Both the CDL and IDL are sus-
ceptible to proteolysis. Caspase-1 is expressed endogenously as inactive 

monomers. Through recruitment by the adaptor protein ASC or NLRC4, 
or the sensor protein CARD8, caspase-1 monomers cluster within the 
inflammasome platform, which induces the dimerization of their 
protease domains. Caspase-1 dimerization enables caspase-1 to form 
the full caspase catalytic domain and gain the capacity to self-cleave.  
Caspase-1 cleaves itself at several sites within the IDL81 to stabilize 
the protease conformation and generate a dimeric species called  
p33/p10 (ref. 82). Caspase-1 p33/p10 is the fully active enzyme that 
enables the inflammasome to cleave substrates such as pro-IL-1β, 
pro-IL-18 and GSDMD83. To terminate inflammasome signalling, the 
active caspase-1 p33/p10 protease self-cleaves at the CDL to release the  
p20/p10 protease species into the cytosol, leading to dimer dissociation 
and shutdown of caspase-1 activity82,83.

Noncanonical inflammasome components
The mouse noncanonical inflammasome activates caspase-11 (Fig. 1), 
whereas the human noncanonical inflammasomes activate caspase-4 
or capase-5 (refs. 84–86). Caspase-4, caspase-5 and caspase-11 are 
inflammatory caspases with a similar domain structure to caspase-1 
and, like caspase-1, they are expressed in resting cells as inactive 
monomers that require dimerization to acquire protease activity29,87. 
However, unlike the caspase-1-containing canonical inflammasomes, 
the noncanonical inflammasomes are lipid–protein assemblies in 
which the CARDs of caspase-4, caspase-5 and caspase-11 interact 
directly with bacterial lipopolysaccharide (LPS) or endogenous oxi-
dized phospholipids to facilitate the activation of their latent pro-
tease function84–86. Although the stoichiometry of ligand to caspase 
within this assembly is unclear, it is expected that noncanonical 
inflammasome complexes induce the formation of caspase dimers 
and, perhaps, higher-order oligomers. Dimerization of caspase-4, 
caspase-5 and caspase-11 confers the capacity to self-cleave at the 
IDL to generate p32/p10 dimers with maximal protease activity29,87,88. 
Whereas caspase-11 cannot cleave pro-IL-1β, recent studies suggest  
that self-cleavage of caspase-4 at IDL residue D289 generates a  
p34/p9 protease species that directly cleaves pro-IL-1β, albeit weakly29. 
Caspase-4 can also process pro-IL-18, as shown by multiple studies30–32. 
The recent cryo-electron microscopy (cryo-EM) and crystal structures 
of caspase-4 in complex with pro-IL-18 have revealed a two-prong 
interaction mode in which the binding site outside of the active site 
(known as the exosite) strengthens and orients the binding site at the 
active site to enable proteolytic processing89,90. Caspase-4, caspase-5  
and caspase-11 cleave GSDMD to generate transmembrane pores 
to initiate pyroptosis37–42,91 or pyroptosis-associated expulsion of  
neutrophil extracellular traps92,93; in so doing, these caspases induce 
a second wave of inflammasome signalling via NLRP3 activation by  
GSDMD-mediated membrane damage and K+ efflux.

NAIP–NLRC4 inflammasomes
NAIPs are cytosolic receptors for various bacterial protein ligands, 
resulting in recruitment of the adaptor protein NLRC4 to form NAIP–
NLRC4 inflammasomes74,75,94–97 (Fig. 2a). There are seven NAIP paral-
ogues in mice (NAIP1 to NAIP7) but only one NAIP in humans. Different 
mouse NAIPs are specific for different bacterial ligands, among which 
NAIP5 and NAIP6 recognize bacterial flagellin, the major protein in the 
bacterial flagellum, and NAIP1 and NAIP2 recognize needle and inner 
rod proteins, respectively, of the type III secretion system. Although 
human cells have only one NAIP, they have been shown to respond 
to both flagellin and needle protein of the type III secretion system, 
perhaps depending on different splicing isoforms95,98.
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The mechanism by which NAIP–NLRC4 inflammasomes are 
assembled and activated has been elucidated from a series of struc-
tural and biochemical studies. When the crystal structure of NLRC4 
was first solved, it showed an autoinhibited, closed conformation76 
(Fig. 2b). Subsequently, reconstitution of the complex of NAIP2 and 
NLRC4 with the rod protein PrgJ of Salmonella enterica subsp. enterica 
serovar Typhimurium suggested that each disc-shaped inflammasome 
contains one copy of NAIP2 and PrgJ but multiple copies of NLRC4; 
cryo-EM structures of 10-fold, 11-fold or 12-fold averaged discs con-
tained mostly NLRC4 (refs. 73,77). The active conformation of NLRC4 
in these structures revealed a rotation of close to 90° within the NACHT 
domain, between its first two subdomains (NBD and helical domain 1 
(HD1)) and its last two subdomains (winged helix domain (WHD) and 
helical domain 2 (HD2)), together with the LRR domain, to open up the 
structure. This conformational change in NLRC4 seemed to be initiated 
by binding to PrgJ-bound NAIP2, and it was successively propagated 
to other NLRC4 molecules in the disc by nucleated polymerization 
(Fig. 2b).

The conformation of ligand-bound NAIP5 was revealed by cryo-EM 
structures of a flagellin-bound NAIP5 in complex with an NLRC4 
mutant that does not self-associate99, and of the wild-type flagellin–
NAIP5–NLRC4 disc solved without applying symmetry100. Flagellin 
was shown to bind in a deep pocket formed by multiple domains of 
NAIP5, a strategy that was suggested to limit the potential for immune 
evasion by the pathogen100. Ligand binding seemed to open up NAIP5 
into an active conformation similar to the active NLRC4 structure. 
However, a recent cryo-EM structure of ligand-free NAIP5 revealed an 
unprecedented open structure that was accessible to recruit inactive 
NLRC4 (ref. 78) (Fig. 2b). Ligand binding to NAIP5 induces a small rota-
tion in the WHD of the NACHT domain that creates a steric clash with 
inactive NLRC4 and places a loop for optimal interaction with active 
NLRC4, thus both triggering and stabilizing the conversion of NLRC4 
to the active state (Fig. 2b).

The NLRP3 inflammasome
NLRP3 is expressed in immune cells such as macrophages, dendritic 
cells and neutrophils101, but at a low level under resting conditions that 
is not sufficient to initiate NLRP3 inflammasome formation. Thus,  
a ‘priming’ step is needed to first upregulate the expression of NLRP3 in 
most cell types28,102–104; the need for priming is shared by some inflam-
masomes such as NLRP6 (ref. 105) but is not required for others such 
as the NAIP–NLRC4 or AIM2 inflammasomes. The reason for this addi-
tional step is not clear but it is suggested that priming might help to 
better regulate inflammasome activation, particularly given that both 
NLRP3 and NLRP6 can be activated by many stimuli. The pro-IL-1β pro-
tein also often requires priming as it is usually not expressed without 
stimulation106, in contrast to pro-IL-18, which is constitutively expressed 
in various cell types106 but can be further upregulated under specific 

conditions107. Acute LPS treatment has been shown to prime NLRP3 acti-
vation even in the presence of the protein synthesis inhibitor cyclohex-
imide, which suggests that priming can occur in a non-transcriptional 
manner, probably involving posttranslational modifications such as 
deubiquitylation and phosphorylation104,108–113.

After priming, NLRP3 can be activated by microbial infection and 
by sterile insults that trigger certain cellular perturbations28,46. Potas-
sium (K+) efflux is a pivotal upstream event for NLRP3 inflammasome 
activation, with high extracellular K+ concentration having an inhibi-
tory effect114–116. Widely used NLRP3 activators support the role of K+ 
efflux in inflammasome activation: nigericin is a bacterial toxin and  
K+ ionophore117, extracellular ATP gates the P2X7 cation channel for 
Ca2+ and Na+ influx and in turn activates the potassium channel TWIK2 
(also known as KCNK6) for K+ efflux117,118, and particulate matter induces 
a decrease of intracellular K+ concentration and increase of intracel-
lular Ca2+ concentration116. Of note, spontaneous K+ efflux in response 
to low extracellular K+ concentration also activates NLRP3 (ref. 116). 
Nonetheless, because ionic fluxes in cells are often coupled, whether 
K+ concentration, or that of another ion, is the key inducer of the NLRP3 
inflammasome remains controversial. In particular, whereas some 
studies have suggested that K+ efflux regulates Ca2+ signalling to acti-
vate the NLRP3 inflammasome119, other studies have suggested that 
K+ efflux induces NLRP3 inflammasome activation independently of 
Ca2+ signalling120.

Crystals and particles that activate NLRP3 include monosodium 
urate crystals13, aluminium hydroxide, silica, asbestos121,122, cholesterol 
crystals123,124 and amyloid-β (ref. 125), which are associated with gouty 
arthritis, pulmonary and cardiovascular diseases, and Alzheimer dis-
ease. Malarial hemozoin is also an NLRP3 inflammasome activator 
owing to its particulate nature, and inflammasome activation may con-
tribute to the recurrent fever attacks and neurodegeneration that are 
associated with malaria126. Activation of NLRP3 by particulate matter 
seems to involve their phagocytosis and subsequent lysosomal damage 
and rupture121,125. The importance of lysosomal damage in inflamma-
some activation is supported by the ability of the lysosomal dam-
age inducer, leucyl-leucine methyl ester, to activate NLRP3 (ref. 121).  
However, how lysosomal damage is associated with K+ efflux remains 
unknown116,119,121. Other factors such as reactive oxygen species, mito-
chondria and oxidized mitochondrial DNA have also been implicated in 
NLRP3 activation127–130. In addition, several agents that activate NLRP3 
independently of K+ efflux have been described, including the TLR 
agonists imiquimod and CL097, which activate NLRP3 independently 
of TLR signalling131.

The NLRP3 inflammasome has been heavily investigated owing 
to its biological significance and therapeutic relevance, which have 
recently been reviewed elsewhere22,55. Here, we focus on describing 
the structural nature of NLRP3 — from its interaction with NEK7 to the 
inactive oligomer structure that we refer to as a ‘cage’ and to the active 

Fig. 1 | The canonical and noncanonical inflammasome pathways. The figure 
summarizes the canonical inflammasomes comprising NLRP1, NLRP3, NLRP6, 
NAIP–NLRC4, AIM2 and pyrin, the noncanonical inflammasomes formed by 
caspase-4 and caspase-5 (human) and caspase-11 (mouse), and the adaptor and 
effector proteins associated with these pathways, notably the adaptor ASC  
and the effectors caspase-1, IL-1 family cytokines, GSDMD and NINJ1. Shown  
are the major protein domains involved in structural organization and function.  
For more detailed descriptions of each pathway, see the main text. AIM2, absent  
in melanoma 2; ASC, apoptosis-associated speck-like protein containing a CARD;  

BIR, baculoviral inhibitor of apoptosis repeat; CARD, caspase recruitment domain; 
DPP, dipeptidyl peptidase; dsDNA, double-stranded DNA; GSDMD, gasdermin D;  
HIN, haematopoietic interferon-inducible nuclear; LLPS, liquid–liquid 
phase separation; LPS, lipopolysaccharide; LRR, leucine-rich repeat; NACHT, 
nucleotide-binding and oligomerization domain; NAIP, neuronal apoptosis 
inhibitory protein; NBD, nucleotide-binding domain; NINJ1, ninjurin 1;  
NLRC, NAIP–NBD-containing, LRR-containing and CARD-containing protein;  
NLRP, NBD-containing, LRR-containing and PYD-containing protein; PYD, pyrin 
domain; UVB, ultraviolet B radiation; VbP, Val-boro-pro (DPP8 and DPP9 inhibitor).
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disc-like structure with ASC — which collectively begin to sketch out a 
series of conformational changes that occur in the NLRP3 activation 
pathway.

Structure of the NLRP3(∆PYD)–NEK7 complex
The first NLRP3 structure was determined in 2019 (ref. 132) following the 
discovery of NEK7 as an essential factor in mouse NLRP3 activation133–135. 
NEK7 is a centrosomal serine/threonine kinase; for NLRP3 activation, 
the kinase scaffold but not the kinase activity is required. A PYD-deleted 
(∆PYD) human NLRP3 construct was shown to form a complex with 
human NEK7 at a sub-micromolar binding affinity132. The stability of 
NLRP3 and of the NLRP3–NEK7 complex was increased by the addi-
tion of ADP and the specific NLRP3 inhibitor MCC950 to the samples 
for cryo-EM structure determination136. This ability to reconstitute a 
complex between inactive NLRP3 and NEK7 suggested that NEK7 is not 
the direct activator of NLRP3, despite its requirement to form an active 
NLRP3 inflammasome. Of note, although the role of NEK7 has been 
demonstrated in mouse cells and in mice, its function in human cells 
has been controversial. In particular, a recent study has suggested that 
in human cell lines, NEK7 is redundant for inflammasome activation 
when the nuclear factor-κB regulator IKKβ is activated during priming 
but it can synergize with IKKβ to shorten the priming requirement for 
NLRP3 activation137.

The NLRP3(∆PYD)–NEK7 structure revealed a first glimpse of 
inactive NLRP3, from its central NACHT domain to the C-terminal 
LRR domain132 (Fig. 3a). Whereas ADP was shown to bind the NACHT 

domain, the location of MCC950 binding was not determined owing 
to the limit in resolution. The NLRP3 NBD and HD2 (subdomains of 
NACHT) and the LRR domain contact the C-terminal lobe of NEK7 and 
assume a tight grip around it; the N-terminal lobe of NEK7 is disordered 
in this structure. Structure-based mutagenesis of the binding inter-
face indicated that the LRR domain and HD2 of NLRP3 are important 
for NEK7 binding whereas the NBD is dispensable. This conclusion is 
consistent with the hypothesis that NEK7 most probably is recruited 
after NLRP3 has changed to its active conformation, when the NBD is 
rotated out of the vicinity of NEK7 (ref. 138). Thus, the NLRP3–NEK7 
structure provides the molecular basis for NEK7 recruitment to the 
NLRP3 oligomer.

Structure of NLRP3 ‘cages’
Structures of full-length NLRP3 as determined by cryo-EM were shown to 
exist as double-ring-shaped cages, with human NLRP3 forming decam-
ers and mouse NLRP3 forming dodecamers to hexadecamers139–141 
(Fig. 3b). These NLRP3 oligomers are referred to as cages because the 
PYDs of the NLRP3 molecules, which are important for ASC recruit-
ment and inflammasome assembly, seem to be shielded within the 
cages, possibly to prevent premature activation140. In all structures, 
the cages are formed by interactions between the LRR domains of the 
two NLRP3 rings, together with interactions between the PYDs139–141. 
Although the PYD–PYD interactions were not directly visualized as 
ordered densities, low-resolution densities were observed and the 
PYDs are important for cage formation. These data were interpreted 
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part b. b, Formation of the NAIP5–NLRC4 inflammasome. Step 1: the unliganded 
NAIP5 (Protein Data Bank [PDB:7RAV]) and inactive NLRC4 [PDB:4KXF] at resting 
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as the existence of PYD filaments within the cage in one study140 but 
were modelled as two PYD molecules in another study139.

Surprisingly, NLRP3 cages are mainly membrane bound, as shown 
by fractionation experiments in NLRP3-overexpressing cells or macro-
phage cell lines endogenously expressing NLRP3, despite NLRP3 not 

being a bona fide transmembrane protein140. This observation is 
consistent with earlier studies showing the localization of NLRP3 at 
various intracellular organelles before NLRP3 activation142. Immuno-
fluorescence imaging of wild-type, immortalized bone marrow-derived 
macrophages revealed partial localization of NLRP3 at the trans-Golgi 
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with the domain colours matching those shown in part b. Typical disease-associated 
mutations in NLRP3 are highlighted. b, Formation of the NLRP3 inflammasome. Step 1:  
upon upregulation of their expression (‘priming’), NLRP3 proteins are present 
in the cytosol and on the trans-Golgi network (TGN) as monomeric proteins or 
inactive ‘cage’ structures [PDB:7PZC]. Step 2: upon stimulation, inactive NLRP3 cages 
presumably undergo conformational changes. The TGN disperses into vesicles 
(dispersed TGN (dTGN)) containing hypothetical active NLRP3 cages. Step 3: via 
microtubule trafficking, the vesicles move to the microtubule organizing centre 
(MTOC), wherein NEK7 [PDB:6S76] proteins are located. Step 4 and step 5: NEK7 
interacts with NLRP3 cages [PDB:6NPY], presumably disrupting and opening each 

cage into two halves. Step 6: the two halves rearrange and unite into an inflamma-
some disc [PDB:8EJ4 and PDB:8ERT]. Step 7 and step 8: ASC [PDB:2KN6] adaptor 
proteins are recruited to the NLRP3 inflammasome disc via homotopic PYD–PYD 
interactions [PDB:8EJ4, PDB:8ERT and PDB:3J63], resulting in a PYD–PYD filament 
that oligomerizes the CARDs of ASC molecules to mediate caspase-1 recruitment. 
Domains are colour coded as in part a. ASC, apoptosis-associated speck-like protein 
containing a CARD; CARD, caspase recruitment domain; FISNA, fish-specific 
NACHT-associated domain; HD, helical domain; LRR, leucine-rich repeats; NACHT, 
nucleotide-binding and oligomerization domain; NBD, nucleotide-binding domain; 
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network (TGN), as marked by TGN38, and this localization was further 
increased when NLRP3 was stably expressed to reconstitute NLRP3-
knockout cells140. Interestingly, the TGN disperses into vesicles marked 
by TGN38 known as dispersed TGN (dTGN) in response to NLRP3 
stimuli143, and NLRP3 mutants that cannot form cages are defective in 
both TGN dispersion and NLRP3 activation140.

Another study has suggested that NLRP3 inflammasome activators 
converge on disrupting endoplasmic reticulum–endosome membrane 
contact sites, causing endosomal accumulation of phosphatidylinosi-
tol 4-phosphate (PI4P) and a consequent impairment of endosome-to-
TGN trafficking144. In this context, endosomes can accumulate TGN38, 
giving them the appearance of dTGN vesicles. The TGN dispersion 
model of NLRP3 may, thus, be unifiable with the endosomal model  
in that both models involve the accumulation of PI4P-enriched vesicles 
that recruit NLRP3. Of note, in studies involving changes to extracel-
lular K+ concentration, it was suggested that K+ efflux is essential for 
NLRP3 recruitment to vesicles and NLRP3 activation. By contrast, 
when NLRP3 recruitment to vesicles was forced by fusing the pro-
tein to a Golgi-localization domain, then increased extracellular  
K+ concentration had no effect on NLRP3 activation143.

Structure of the active NLRP3 inflammasome
The first indication that NLRP3 is associated with the microtubule- 
organizing centre (MTOC) came from the identification of the 
centrosomal kinase NEK7 as an essential factor in NLRP3 activation133–135. 
Indeed, the NLRP3 inflammasome has been shown to localize at the 
MTOC to form the caspase-1 p33/p10 active enzyme145,146, and micro-
tubule retrograde transport by dynein and a dynein adaptor, HDAC6, 
is required for this MTOC localization of NLRP3 and for inflammasome 
activation. As the TGN marker TGN38 was detected at the MTOC upon 
inflammasome activation, and NEK7 can decrease the amount of NLRP3 
cages in vitro, it was proposed that NLRP3 cages are transported on vesi-
cles to the MTOC wherein they bind NEK7 and change their structural 
organization140,146.

The cryo-EM structure of an active NLRP3 inflammasome was 
solved recently after optimizing the reconstitution method138 (Fig. 3b). 
NLRP3 and NEK7 were co-transfected and expressed in human Expi293 
cells and stimulated with the NLRP3 activator nigericin before harvest-
ing. Previous studies using an engineered NLRP3 with a biolumines-
cence resonance energy transfer (BRET) sensor have suggested that 
nigericin or other K+ ionophores alter NLRP3 conformation in a K+ 
efflux-dependent manner147, a process that has not been achievable 
using recombinant proteins probably owing to the requirement of 
membranes. The BRET study has also revealed the importance of the 
fish-specific NACHT-associated (FISNA) domain of NLRP3 (ref. 147) — 
an additional NACHT subdomain, in front of the NBD — in mediating 
this conformational change, which was confirmed by the active NLRP3 
inflammasome structure138. The successful reconstitution of the active 
NLRP3 inflammasome required the addition of Mg2+ and ATPγS, pre-
sumably to keep NLRP3 in an active conformation, and of ASC PYD, 
to further promote NLRP3 inflammasome formation. The require-
ment for ASC to assemble a stable NLRP3 inflammasome is in con-
trast to the previously solved NAIP–NLRC4 inflammasome structure  
(without ASC)73.

The active NLRP3–NEK7–ASC complex comprises mainly 10 or 11 
individual subunits of NLRP3, with the 10-fold structure being more 
prevalent and solved at a higher resolution138 (Fig. 3b). The NLRP3–NEK7 
complex forms a disc-shaped structure with the NACHT domains of 
NLRP3 near the disc centre and the NEK7-bound LRR domains of NLRP3 

at the periphery. The PYDs of NLRP3 form a PYD filament that protrudes 
orthogonally from the centre of the disc, which further recruits ASC 
through PYD–PYD interaction. The hybrid NLRP3–ASC PYD filament 
structure is similar to the PYD filament structures of ASC and NLRP3 
separately59,62. There is a symmetry mismatch between the disc and the 
filament, probably made possible by the flexible linker between the PYD 
and the NACHT domain of NLRP3. Large-scale conformational changes 
are observed between the ADP-bound inactive NLRP3 conformation132 
and the ATP-bound active NLRP3 conformation138, which are reflected 
by a rotation of approximately 85° between the FISNA–NBD–HD1 region 
of NLRP3 and the WHD–HD2–LRR region, and by local conformational 
changes in particular at the FISNA domain. Interactions at the centre of 
the disc are dominated by the FISNA domain, with additional contribu-
tions from NBD, HD1 and WHD138.

Intriguingly, each NEK7 molecule binds to only one NLRP3 mole-
cule and does not participate in NLRP3 oligomerization in the disc138. 
Thus, we propose that the function of NEK7 is to break inactive NLRP3 
cages to allow for reassembly. Although this disc structure provides a 
framework for understanding NLRP3 biology, many additional pro-
teins can modulate NLRP3 inflammasome assembly, such as BTK148, 
MAVS149,150 and NLRP11 (ref. 151), and numerous posttranslational 
modifications of NLRP3 have been identified25,152–154, which open up 
the possibility that NLRP3 cross-talks with a large number of cellular 
pathways to regulate its activation. Interestingly, the minimal require-
ment for NEK7 for NLRP3 inflammasome activation in human cell lines 
was shown to be attributable to IKKβ-induced recruitment of NLRP3 to 
the TGN during priming137. Whether NEK7-independent inflammasome 
activation alters microtubule-mediated trafficking and the localization 
of NLRP3 inflammasome specks remains to be addressed.

NLRP1 and CARD8 inflammasomes
Although NLRP1 was the first protein to be identified as forming a 
caspase-1-activating complex9, its activation mechanism was not elu-
cidated until much later. Like other NLRPs, human NLRP1 contains a 
PYD at the N-terminus. However, the PYD of NLRP1 has an autoinhibi-
tory function rather than recruiting ASC to form the inflammasome. 
In support of this, mutations in NLRP1 PYD cause hyperactivation and 
have been associated with inflammatory skin diseases155,156. In addition 
to a PYD, and NACHT and LRR domains, NLRP1 also contains a unique 
function-to-find domain (FIIND) followed by a CARD at the C-terminus157 
(Fig. 4a). The FIIND, composed of ZU5 and UPA subdomains, undergoes 
autoproteolytic cleavage at a Ser–Phe–Ser motif at the C-terminal end of 
ZU5, generating an N-terminal PYD–NACHT–LRR–ZU5 fragment that is 
autoinhibitory and a C-terminal UPA–CARD fragment that activates the 
inflammasome158. This autocleavage event is required for NLRP1 func-
tion, and it is important that the N-terminal and C-terminal fragments  
remain associated with each other at the resting state159–162.

It is now established that proteasome-dependent ‘functional deg-
radation’ of the N-terminal fragment is the main mechanism by which 
NLRP1 is activated159,161,163. It has been observed that anthrax lethal factor 
cleaves the N-terminal domain of NLRP1b, a mouse NLRP1 orthologue 
naturally lacking a PYD, resulting in inflammasome activation164–166. 
Upon cleavage, the N-terminal fragment undergoes ubiquitylation by 
the N-end rule ligase UBR2 (refs. 159,167), leading to its proteasomal 
degradation and liberation of the C-terminal fragment for inflamma-
some activation159,161 (Fig. 4a). Shigella flexneri ligase IpaH7.8 directly 
ubiquitylates NLRP1b, also resulting in proteasomal degradation 
and inflammasome activation161,163. Moreover, the prolyl dipeptidyl 
peptidases DPP8 and DPP9 have been shown to associate with and 
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inhibit NLRP1 inflammasome activation, and small-molecule inhibi-
tors of DPP8 and DPP9, such as Val-boro-pro (VbP), activate the NLRP1 
inflammasome by a proteasome-dependent mechanism159,168–171.

Ultraviolet B (UVB) radiation is another stimulus that is known to 
induce NLRP1 activation in human, but not rodent, keratinocytes172,173, 
and ribosome stalling caused by UVB radiation to mediate the  
ribotoxic stress response has been associated with activation of  
the mitogen-activated protein kinase ZAKα174,175. Putting these two 
observations together, it was hypothesized and demonstrated that RNA 
damage caused by UVB radiation or toxins activates the NLRP1 inflam-
masome through ZAKα; together with its downstream kinase p38, ZAKα 
directly phosphorylates a human-specific disordered linker region 
of NLRP1, leading to ubiquitylation and degradation of the NLRP1 
N-terminus to activate the NLRP1 C-terminus. These data established 
inflammasome-driven pyroptosis as an integral component of the ribo-
toxic stress response176,177. Furthermore, the p38 kinase was implicated 
in mediating NLRP1 inflammasome activation after viral infection176.

The 3C protease from human rhinoviruses, a type of picornavirus, 
and other proteases from diverse picornaviruses have been shown to 
cleave human NLRP1, resulting in its ubiquitylation via a cullin E3 ligase 
machinery and N-terminal degradation178,179. By contrast, viral dsRNA 
seems to activate human NLRP1 via a direct interaction independently 
of the proteasome180. NLRP1 is also emerging as a general sensor of cel-
lular stress, including reductive stress, in which reduced thioredoxin-1 
cannot bind to NLRP1 to restrain its activity181,182, and protein folding 
stress, in which distinct inhibitors of protein folding or inducers of 
the unfolded protein response accelerate degradation of the N-terminal 
fragment of NLRP1 (ref. 183).

Structure of the NLRP1–DPP9 complex
DPP8 and DPP9 inhibit both rodent and human NLRP1 inflammasomes 
through a direct interaction with NLRP1 FIIND171 (Fig. 4a). Cryo-EM 
structures of human or rat NLRP1 in complex with DPP9 surprisingly 
revealed a tripartite assembly, in which each DPP9 molecule of a DPP9 
dimer binds one full-length NLRP1 and one UPA–CARD C-terminal 
fragment of NLRP1 (refs. 184,185) (Fig. 4b). Because these complexes 
were obtained from co-expression of NLRP1 and DPP9 in the absence 
of any stimulation, the existence of the UPA–CARD fragment sug-
gests that it was generated either by increased degradation of the 
NLRP1 N-terminal fragment owing to overexpression-induced stress 
or by basal levels of N-terminal degradation during homoeostatic 
protein turnover.

In both structures, only the FIIND (ZU5 and UPA) of full-length 
NLRP1 and the UPA of the C-terminal fragment are visible, indicating 
that the remaining domains are flexibly linked184,185. In the FIIND of 
full-length NLRP1, ZU5 and UPA subdomains associate extensively with 
each other along the longer dimensions of their β-sandwich folds184,185, 
illustrating how the N-terminal and C-terminal fragments in auto-
processed NLRP1 do not dissociate (Fig. 4b) until the N-terminal frag-
ment is degraded by the proteasome. The FIIND of full-length NLRP1 
can interact with DPP9 in the absence of the C-terminal UPA–CARD frag-
ment, whereas the recruitment of the C-terminal UPA to DPP9 requires 
that DPP9 is already in complex with FIIND, and UPA alone cannot stably 
interact with DPP9 (refs. 184,185). In the human NLRP1–DPP9 complex, 
the N-terminal strand of the UPA of the C-terminal fragment of NLRP1, 
which contains a DPP9 substrate motif, inserts into the active-site 
tunnel of DPP9 to reach close to the active site, which is an interaction 
that is crucial for the recruitment of DPP9 (ref. 185). However, when the 
DPP9 inhibitor VbP is present, it binds in the active-site pocket of DPP9 

to displace the UPA N-terminal strand from DPP9, resulting in release 
of the UPA–CARD fragment185 (Fig. 4c).

These structures offer a plausible mechanism to explain how the 
tripartite NLRP1–DPP9 assembly inhibits the C-terminal fragment of 
NLRP1 from assembling an inflammasome. As shown below, the UPA 
of NLRP1 C-terminal fragment can self-oligomerize, which promotes 
CARD filament formation and inflammasome activation71,72. By con-
trast, DPP9-bound UPA is inhibited from oligomerization by steric 
hindrance (Fig. 4b), quenching the intrinsic ability of NLRP1 C-terminal 
fragment to form an inflammasome and avoiding inappropriate NLRP1 
inflammasome activation during homoeostatic protein turnover 
that results in degradation of the N-terminal fragment of NLRP1. The 
structures imply that such inhibition requires that the concentration 
of full-length NLRP1 is greater than or equal to the concentration of 
C-terminal fragment. However, when NLRP1 is stimulated to undergo 
functional degradation, the amount of C-terminal fragment ultimately 
exceeds the amount of full-length NLRP1, leading to the accumula-
tion of free C-terminal fragment. The C-terminal UPA and CARD then 
cooperatively oligomerize, which leads to CARD filament formation 
and inflammasome activation71,72 (Fig. 4d,e).

Germline mutations of human NLRP1, which is expressed at high 
levels in human keratinocytes, lead to skin-related inflammatory dis-
eases such as multiple self-healing palmoplantar carcinoma, familial 
keratosis lichenoides chronica156, vitiligo186,187 and autoinflammation  
with arthritis and dyskeratosis171,188. Among these deleterious muta-
tions, A54T, A66V, M77T (ref. 156), L155H (refs. 186,187), R726W (ref. 188),  
∆F787–R843 (ref. 156) and M1184V (refs. 186) lie in the autoinhibitory 
N-terminal fragment, whereas P1214R (refs. 171,188) localizes at the 
DPP9 substrate motif of the inflammatory C-terminal fragment, causing 
constitutive human NLRP1 activation and downstream pyroptosis156,171 
(Fig. 4a). Thus, the structural framework of the tripartite NLRP1–DPP9 
assembly also helps to explain the biology of disease-associated NLRP1 
mutations.

Structure of the NLRP1 C-terminal filament
The CARD of NLRP1 interacts with ASC, which bridges NLRP1 and 
caspase-1 for inflammasome assembly189. Previously determined 
CARD filament structures of the inflammasome components ASC, 
caspase-1 and NLRC4 (refs. 66,67) illustrated the mechanistic basis 
for self-oligomerization and hetero-oligomerization of CARDs. For 
NLRP1, an important distinguishing feature is that its CARD is ineffec-
tive in oligomerization by itself but can be promoted to oligomerize 
by the UPA domain71,72. Cryo-EM structures of the NLRP1 C-terminal 
fragment revealed an ordered density only for the CARDs, whereas 
oligomerized UPA molecules tend to be flexibly linked at the outside of 
the filament71,72 (Fig. 4d). Unlike any of the other CARD filament struc-
tures solved previously, the NLRP1 C-terminal filament is composed of 
CARD dimers with twofold symmetry, rather than monomers, despite 
having similar helical symmetry to the other CARD filaments72. This 
CARD dimer structure was also observed in a previous crystal structure 
of NLRP1 (ref. 190). The dimer composition of the NLRP1 C-terminal 
assembly results in a two-layered appearance whereby the dimeric 
partners protrude outwards from the core filament72 (Fig. 4d). How-
ever, the NLRP1 CARD assembly that is formed at high concentration 
and in the absence of UPA has a monomeric CARD filament71, and the 
functional significance of the CARD dimer remains unclear.

Furthermore, the structures of NLRP1 UPA–CARD and NLRP1 
CARD filaments predicted that the CARD of NLRP1 recruits the CARD 
of ASC through charge complementarity on the cross sections of 
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the filaments71,72. By contrast, NLRP1 CARD was predicted not to be  
able to recruit the CARD of caspase-1 directly owing to lack of structural 
and charge compatibility at the interface. The nature of UPA oligomeri-
zation was implicated by mutations at the interface between the UPAs 
of full-length NLRP1 and of the C-terminal fragment, which — despite 
the release of the C-terminal fragment from the tripartite NLRP1–DPP9 
assembly — did not activate but rather abrogated inflammasome 
activation185. These data suggest that abrogation of inflammasome acti-
vation by the UPA mutations was owing to impaired UPA oligomeriza-
tion through a mode of interaction observed in tripartite NLRP1–DPP9 
(refs. 71,72,184,185).

Structure of the CARD8 inflammasome
Similar to NLRP1, human CARD8 (not present in rodents) has an auto-
proteolytic FIIND at its core — in addition to a disordered N-terminal 
region that varies between isoforms and a C-terminal CARD162,191 —  
and has a similar mechanism of activation162,170,191. The inflammatory 
UPA–CARD C-terminal fragment of CARD8 must be released from 
the inhibitory N-terminal fragment to allow for CARD8 activation170. 
DPP8 and DPP9 directly interact with full-length CARD8 and the 
C-terminal fragment to suppress inflammasome activation during 
homoeostatic CARD8 turnover192. Small-molecule inhibitors of DPP8 
and DPP9 induce pyroptosis in human monocytes and macrophages 
through CARD8 activation and are being investigated for potential 
cancer therapies169,170. CARD8 was shown to be an inflammasome sen-
sor for HIV-1 protease, leading to CARD8 ubiquitylation, degradation 
of the N-terminal fragment and activation of the C-terminal fragment 
in infected cells193. In addition, anti-HIV-1 non-nucleoside reverse tran-
scriptase inhibitors can promote premature activation of HIV-1 protease 
to trigger the CARD8 inflammasome, which suggests that targeting 
the CARD8 inflammasome could be a potent and broadly effective 
strategy for HIV eradication193. Proteases from diverse coronaviruses 
including SARS-CoV-2 (ref. 194) and enteroviruses195 can also cleave 
CARD8, resulting in virus-induced pyroptosis in infected CD4+ T cells, 
monocytes, macrophages or endothelial cells.

A cryo-EM structure of the CARD8–DPP9 complex has revealed reg-
ulatory mechanisms that are similar to those of NLRP1 (ref. 192). These 
mechanisms include the suppression of CARD8 C-terminal activity by 
DPP9 and full-length CARD8, the association of the N-terminal frag-
ment with the C-terminal fragment in full-length CARD8, and the inhi-
bition of CARD8 UPA oligomerization by the tripartite CARD8–DPP9 
assembly192. However, in contrast to NLRP1, the N-terminal strand 
of CARD8 UPA alone does not insert deeply into the DPP9 active 
site and VbP does not directly displace CARD8 from DPP9 (ref. 192).  
Thus, it seems that VbP induces CARD8 activation mainly by proteostatic  
stress that upregulates CARD8 functional degradation.

Effects of inflammasome signalling
GSDMD was identified as a bona fide substrate for the inflammatory 
caspases through genetic screens, and the cleavage of human GSDMD 
at Asp275 generates an active N-terminal fragment and an autoinhibi-
tory C-terminal fragment37–39 (Fig. 5a,b). GSDMD had also previously 
been identified as a major hit for substrates of inflammatory caspases 
from a proteomics screen196. In addition to inflammasome-mediated 
cleavage, GSDMD can also be cleaved and activated by caspase-8, as 
well as by neutrophil granule enzymes92,197,198. GSDMD cleavage and 
activation are important for both the induction of pyroptosis and the 
release of IL-1 family cytokines from cells. The N-terminal fragment of 
GSDMD was shown to bind acidic lipids at the inner leaflet of plasma 

membranes and at mitochondrial membranes, and to mediate the 
formation of large transmembrane pores40–45, providing a potential 
mechanistic basis for cytokine release through the pores and for mem-
brane damage in pyroptosis199,200. Expression of GSDMD N-terminal 
fragment in human cells40–45 and treatment of bacteria with recombi-
nant N-terminal frgament42 both caused cell death, indicating that the 
GSDMD N-terminal fragment has cytotoxic function. GSDMD belongs 
to a family of gasdermins and the discovery of their pore-forming activ-
ity redefined pyroptosis as gasdermin-mediated programmed lytic cell 
death34,201. This definition has now been extended by the role of NINJ1 
in rupturing membranes to complete pyroptosis202.

Structure of autoinhibited GSDMD
The mechanism of GSDMD autoinhibition has been indicated by crys-
tal structures of full-length mouse GSDMA3 and full-length mouse 
and human GSDMD41,203. Even though extensive loop truncations were 
required for crystallization of GSDMD, the structures of truncated 
GSDMD nonetheless revealed that, similar to the GSDMA3 structure, 
the N-terminal fragment is composed of a twisted β-sheet surrounded 
by α-helices and a largely disordered region responsible for membrane 
insertion, and the C-terminal fragment is composed of tightly packed 
α-helices (Fig. 5b). The N-terminal and C-terminal fragments interact 
extensively to exert autoinhibition by masking membrane-binding 
elements. Disease-associated, gain-of-function mutations in GSDMD 
often map to the C-terminal fragment at the autoinhibitory contact 
sites; these mutations bypass signal-dependent activation of GSDMD 
and lead to its constitutive activation41,203.

GSDMD is a substrate for all inflammatory caspases. The crystal 
structure of caspase-1 in complex with a GSDMD IDL peptide contain-
ing the FLTD tetrapeptide motif (residues 272–275 in human GSDMD) 
at first suggested that caspase-1 recognizes GSDMD using the same 
mechanism by which caspases self-cleave204. However, GSDMD rec-
ognition by inflammatory caspases turned out to be more complex. 
Biochemical and functional characterization revealed that caspase-4 
and caspase-11 first need to be fully autoprocessed to generate the p10  
fragment that participates in the active enzyme. A region of the cas-
pases away from the active site (the exosite) then interacts with 
GSDMD C-terminal fragment with high affinity through hydrophobic 
and hydrogen-bonding interactions205. The exosite interaction posi-
tions the interdomain cleavage site of GSDMD at the caspase catalytic  
site, as shown by the crystal structure of caspase-1 in complex with 
full-length GSDMD206 (Fig. 5c). This two-site mode of interaction has 
now also been observed in the structures of caspase-4 in complex with 
pro-IL-18 (refs. 89,90), which could suggest a general mechanism of 
substrate recognition by inflammatory caspases and could explain why 
inflammatory caspases seem to have fewer substrates than apoptotic 
caspases.

Structure of the GSDMD pore
The first gasdermin N-terminal structure in the pore form was revealed 
by cryo-EM studies of the GSDMA3 N-terminal pore, which showed 
the β-barrel nature of the pore, the large conformational changes that 
occur upon membrane insertion, and the mechanisms of lipid bind-
ing and oligomerization, with implications for the entire gasdermin 
family207. Recently, the human GSDMD N-terminal pore structure33 
was solved (Fig. 5d,e). In addition to fully formed pores with the large 
β-barrel that should traverse the membrane, these structures also 
revealed oligomerized rings without the β-barrel, which were dubbed 
‘prepores’41,207. The existence of a prepore structure suggests that it 
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may represent an oligomerized intermediate structure on mem-
brane before GSDMD insertion and pore formation, but studies using 
atomic force microscopy have also suggested the assembly of arc- 
shaped and slit-shaped membrane pores that can transform into 
ring-shaped pores, which implies that further oligomerization can 
occur even after GSDMD membrane insertion208.

Most GSDMA3 and GSDMD N-terminal pores reconstituted in vitro 
consist of 26–28 subunits and 31–34 subunits, respectively, with outer 
diameters of approximately 30 nm and inner diameters of approxi-
mately 20 nm. The membrane-inserted N-terminal fragment assumes 
the shape of a hand, with the membrane-binding α1 helix as a folded 
thumb, the rest of the globular region as the palm and two β-hairpins 
as the fingers. In autoinhibited full-length structures or prepores, 
the fingers of the N-terminal subunits are tucked into a fist and not 
extended. Thus, the main conformational change that occurs during 
membrane insertion involves the extension of the fingers to form the 
transmembrane β-barrel (Fig. 5d), whereas the globular domain faces 
the cytosol33. Pore structures for GSDMB N-terminal fragments have 
also been determined209,210 (Fig. 5f), and a structural comparison sug-
gests that the main differences between the different pore structures 
may occur at their lipid-binding elements.

The cryo-EM structure of the GSDMD pore33 provided a plausi-
ble explanation as to why inflammasome-activated live cells release 
mature IL-1β or IL-18 protein but not their pro-IL precursors211. This is 
important because only the mature, processed cytokines can inter-
act with their respective receptors to activate downstream gene 
expression and amplify inflammation. It was noted that although 
pro-IL-1β and pro-IL-18 are small in size relative to the inner dimen-
sion of the GSDMD pore, they are highly negatively charged (acidic) 
owing to their prodomains35. The GSDMD pore conduit is highly nega-
tively charged (Fig. 5g), which suggested that it might repel negatively 
charged pro-IL-1β and pro-IL-18 to inhibit their release through the pore, 
through a mechanism known as electrostatic filtering33. Indeed, small 
negatively charged dextran or protein has the slowest rate of release 
from GSDMD pores relative to neutral or positively charge cargoes 
of similar molecular weights33. Mutating away acidic patches in the 
GSDMD N-terminal conduit compromised the selectivity of the pore 
against an acidic, negatively charged cargo33,212. Previously, uncon-
ventional secretion of fibroblast growth factor 2 (FGF2) was shown to 
depend on caspase-1 activity213, raising the possibility that the highly 
basic (positively charged) protein FGF2 can be released from cells 
through caspase-1-activated GSDMD pores.

Interestingly, molecular modelling and calculations of electro-
static surface potential suggested that the acidic nature of the GSDMD 
pore conduit is conserved in other gasdermin pores33, which raises the 
question of whether there are biological reasons to deter the release 
of a negatively charged cargo in general while allowing the release of a 
neutral or positively charged cargo. Certain other IL-1 family members, 
for example, IL-1α and IL-37, also have an acidic prodomain and become 
more basic upon maturation, which suggests that the mature forms of 
these cytokines might also be selectively released by gasdermin pores 
in live cells. In this context, and for another gasdermin family member 
GSDME, it was shown that T helper 17 cells activate NLRP3 to result in 
caspase-8 and caspase-3 activation, leading to GSDME cleavage214. 
GSDME pores, which also have an acidic conduit33, then release mature 
IL-1α, processed by the calcium-activated cytosolic enzyme calpain, 
but not pro-IL-1α (ref. 214). Thus, although pro-IL-1α and IL-1α can both 
bind and activate the cognate receptor, in this case, only mature IL-1α 
is released and able to activate the receptor.

Structure of NINJ1 oligomers
The ninjurin proteins, including NINJ1 and its homologue NINJ2, are 
small cell-surface proteins first identified as adhesion molecules that 
promote axonal growth upon nerve injury215,216. NINJ1 (but not NINJ2) 
was later shown to mediate plasma membrane rupture downstream 
of GSDMD pore formation to complete lytic cell death202. The signal 
delivered by GSDMD to activate NINJ1 is currently unknown, but is 
likely to involve membrane permeabilization, membrane tension or 
membrane lipid redistribution, as NINJ1 is also activated by secondary 
necrosis, another lytic form of cell death202. Both NINJ1 and NINJ2 have 
a predicted domain architecture comprising an N-terminal segment 
that is important for cell adhesion, an amphipathic helix and two 
transmembrane helices at the C-terminal end202 (Fig. 6a).

Structural studies have begun to reveal how NINJ1 may induce 
plasma membrane rupture. A recent cryo-EM study at a 3.8-Å resolu-
tion has shown that NINJ1 forms straight filaments, with one side being 
hydrophobic and the other side being hydrophilic217. In this structure, 
two NINJ1 filaments are bundled in the overall structure, with the hydro-
phobic faces of the filaments facing each other (Fig. 6b). Within each 
NINJ1 subunit, the predicted amphipathic extracellular helix actually 
comprises two helices (α1 and α2), followed by the transmembrane 

Glossary

Alarmin
Alarmins are proteins, peptides, 
metabolites or others that are released 
to the outside of a cell in response to  
immune activation, as a result of 
transmembrane pore formation, cell 
injury and lytic death, or degranulation. 
These endogenous molecules 
may have chemotactic and/or 
immune-activating properties to alert 
the host for defence.

Cryopyrin-associated periodic 
syndromes
(CAPS). A set of genetic diseases of 
differing severity caused by autosomal 
dominant mutations in NLRP3. Patients 
with CAPS develop spontaneous 
inflammation and excessive release of 
the cytokine IL-1β, and may also suffer 
from arthralgia, deafness and hives.

Microtubule-organizing centre
(MTOC). A structure in eukaryotic 
cells from which microtubules are 
nucleated and emanate, which is often 
synonymous with the centrosome.

Neutrophil extracellular traps
Web-like networks of extracellular 
DNA, histones and neutrophil granule 
proteins extruded by neutrophils to trap 
and damage pathogens.

Pyroptosis
Programmed lytic cell death mediated 
by cleavage of gasdermin D by caspase-1, 
caspase-4, caspase-5 and caspase-11, or 
by other gasdermin family members, that 
occurs downstream of inflammasome 
activation or other insults.

Ribotoxic stress response
Activation of stress-associated 
kinases such as p38 and JNK1 owing 
to functional ribosome defects that 
result in inhibition or partial inhibition 
of protein translation. Downstream 
signalling can trigger cell cycle arrest, 
cell death and cytokine production.

Type III secretion
A bacterial secretion system involving 
a needle-like protein complex used to 
deliver effector proteins into the host 
cell cytosol; often found in pathogenic 
Gram-negative bacteria.

Unfolded protein response
A stress response resulting from the 
accumulation of unfolded or misfolded 
proteins in the endoplasmic reticulum 
that helps cells to reduce the stress 
through translation suppression, 
protein degradation and production of 
chaperones, or that induces cell death 
with prolonged stress.
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helices (α3 and α4) that form a hairpin within the membrane (Fig. 6c). 
In each single filament, the α3–α4 hairpin of one NINJ1 subunit interacts 
side-by-side with that of a neighbouring subunit to form a chain assembly 
in the shape of a fence, within which each α1 helix crosses over to the 
neighbouring subunit to stabilize the assembly (Fig. 6d). The extreme 
N-terminal region is disordered in this structure. This structure and 
molecular dynamic simulations led to the hypothesis that the NINJ1 
single filament with a hydrophilic side and a hydrophobic side can stably 
cap membrane edges or form large transmembrane pores. Thus, during 
lytic cell death, the extracellular helices insert into the plasma membrane 
to polymerize NINJ1 monomers and rupture the plasma membrane.

Two preprints reporting structural, biochemical and cell biological 
studies of NINJ1 now add further mechanistic insights into the ability  
of NINJ1 oligomers to rupture the membrane. In one of the preprints, 
both NINJ1 and NINJ2 structures were solved by cryo-EM as bundled 
double filaments at a 2.8-Å and a 3.1-Å resolution, respectively218. These 
structures are similar to that previously published217 and were proposed 
to have been formed during the purification process by the bound lipids 
as almost no protein–protein interactions exist between the filaments 
and some single NINJ1 filaments were also observed under cryo-EM218. 
In the other preprint, curved filaments and ring-shaped oligomers 
of NINJ1 were observed in detergents, and when reconstituted with 
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liposomes, NINJ1, but not NINJ2, was shown to ‘dissolve’ liposomes, 
leaving small heterogeneous rings and larger patches219. Cryo-EM 
reconstruction using short segments from these rings and filaments 
(approximately six subunits), reaching a 4.3-Å resolution, revealed a 
similar fence-like assembly but with a few differences. At the level of indi-
vidual NINJ1 subunits, instead of being straight, the α3 and α4 helices 
are highly bent, with Gly residues at the kinks in both helices (Fig. 6e). 
At the level of NINJ1 filaments, instead of being straight (Fig. 6b), there 
is a prominent curvature on the plane of the assembly, with the concave 
side being hydrophobic and the convex side being hydrophilic (Fig. 6f). 
The degree of this curvature can vary owing to the intrinsic plasticity 
of the subunit interactions, but the hydrophobic side, which seems to be 
denser owing to the fence-like helices, always faces the concave side219.

These studies have begun to suggest intriguing mechanisms for 
NINJ1-mediated membrane rupture. The published structure217 pro-
poses a ‘membrane damage’ model in which the amphipathic single 
filaments could promote membrane rupture by capping and stabiliz-
ing membrane lesions of variable sizes to allow the release of DAMPs, 
or proposes that NINJ1 double filaments could open up into pores in 
response to osmotic pressure to form membrane lesions (Fig. 6g).  
The two preprints218,219 propose a ‘membrane loss’ model in which 
NINJ1 oligomers could break membrane and solubilize membrane 
patches by encircling them, acting as membrane scaffolding proteins in  
nanodiscs (Fig. 6g). The latter model is supported by the hydropho-
bicity of the concave side of NINJ1 oligomers219 and by the observed 
release of NINJ1 oligomers into the cell culture medium218,219. In either 
model, the amphipathic nature of the NINJ1 oligomeric structure is 
key. When the rate of membrane damage exceeds that of membrane 
repair, or in the case of the membrane loss model when there is also 
insufficient membrane to patch up the damage, complete membrane 
rupture may ensue to release alarmins of different sizes. Although 
changes in membrane tension and/or lipid composition have been 
proposed to trigger NINJ1 activation, what exactly activates NINJ1 and 
how this occurs remain to be elucidated. In addition, the features of 
NINJ1, but not NINJ2, that determine its function in cell killing remain 
to be fully addressed.

Conclusions and future directions
In this Review, we present a structural and mechanistic view of inflam-
masomes, from how the sensor proteins are autoinhibited, regulated 
and activated to assemble with adaptor proteins and effector caspases to 
how the effector proteins (caspases, gasdermins and NINJ1) are activated 
to execute their functions in cytokine release and cell death. We antici-
pate that future structural information will further elucidate the com-
plex regulatory network of the well-studied inflammasomes discussed 
here, provide a first glimpse as to the mechanisms of understudied 
inflammasomes, and reveal new therapeutic targets and their structural 
templates to tackle the large number of inflammasomopathies.

Published online: xx xx xxxx
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