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The NLRP3 inflammasome is an innate immune platform that

senses various pathogens and sterile insults. NLRP3

stimulation leads to activation of caspase-1, the secretion of

pro-inflammatory cytokines and an inflammatory cell death

called pyroptosis. Effectors of the NLRP3 inflammasome

efficiently drive an immune response, not only providing

protection in physiological settings but also promoting

pathology when over activated. Generation of reactive oxygen

species (ROS) and intracellular calcium mobilization can

activate the NLRP3 inflammasome. Recent studies suggest

that TRPM2 is a calcium-permeable cation channel mediating

ROS-dependent NLRP3 activation. Here, we review the role of

TRPM2 in NLRP3 inflammasome activation and provide an

update on new functional and structural discoveries.

Understanding the molecular mechanism of TRPM2 dependent

NLRP3 inflammasome activation will shed lights on this

complex pathway and help the developing of therapeutic

strategies.
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The NLRP3 inflammasome
Inflammasomes are supramolecular complexes that acti-

vate caspase-1 or other inflammatory caspases. Among

inflammasomes, the nucleotide-binding domain (NBD)

and leucine-rich repeat (LRR)-containing protein (NLR)

family Pyrin domain (PYD)-containing protein 3

(NLRP3) forms the most studied inflammasome, with

a central role in the innate immune response. NLRP3 is

universally expressed in all immune cells including those

in the brain. It is activated by exogenous stimuli, termed

pathogen-associated molecular patterns (PAMPs) such as
www.sciencedirect.com 
bacterial toxins, and endogenous stimuli, termed damage-

associated molecular patterns (DAMPs) which derive

from the host [1,2�]. NLRP3 activators are chemically

diverse, including, for example, extracellular ATP [3],

bacterial pore forming toxin nigericin [4] and particulate

matters such as uric acid crystals, amyloid aggregates and

cholesterol crystals [5]. The structurally distinct identities

of NLRP3-activating stimuli argue that they might con-

verge to common nodes in NLRP3 activation. Accumu-

lating studies suggest that these common nodes may be

represented by three mechanisms: potassium efflux [6],

calcium mobilization [7�] and the generation and release

of mitochondrial, lysosomal or nuclear reactive oxygen

species (ROS) [8], although how they lead to the assem-

bly of the NLRP3 inflammasome remains elusive.

Nonetheless, the sensing of these different stimuli

triggers a rapid cytosolic inflammatory response by

NLRP3, which recruits the adaptor protein apoptosis-

associated speck-like protein containing a caspase

recruitment domain (ASC) and pro-caspase-1, culminat-

ing in formation of a single perinuclear inflammasome

speck [2�,9]. Upon inflammasome assembly, pro-

caspase-1 is activated by dimerization, which in turn

processes pro-inflammatory cytokines pro-interleukin-1

b (pro-IL-1b) and pro-IL-18 as well as the pore-forming

protein gasdermin D (GSDMD) [10]. Bioactive IL-1b
and IL-18 can be released through the cell membrane

GSDMD pores, and pore formation may be followed by

cell swelling and the pro-inflammatory, lytic cell death

known as pyroptosis. Both cytokine release and lytic

cell death contribute to a wide spectrum of acute and

chronic inflammatory diseases including obesity [11],

diabetes [12], atherosclerosis [13], gout [14,15] and

cancer [16].

Ca2+ influx in NLRP3 inflammasome activation
Many studies have identified Ca2+ influx as a common

node for NLRP3 inflammasome activation and cytokine

release [17��,18��]. The concentration of Ca2+ is kept low

in the cytoplasm (�100 nM), which enables the flux from

the extracellular space or intracellular stores. A rapid

increase in cytoplasmic Ca2+ leads to the activation of

various Ca2+ binding proteins and diverse cellular out-

comes [19]. Specifically, artificial abrogation of Ca2+ flux

from either the extracellular environment or intracellular

pools has been shown to significantly inhibit ASC oligo-

merization and pro-caspase-1 processing in NLRP3

inflammasome activation [20].
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One potential intracellular Ca2+ source is the endoplas-

mic reticulum (ER), and the inositol trisphosphate

receptor (IP3R), a Ca2+ channel mainly localized at

the ER, may activate NLRP3 by releasing Ca2+ into

the cytoplasm upon stress-related stimuli. Pharmacolog-

ical inhibition of the IP3R channel has been implicated

in preventing NLRP3 inflammasome activation in

human and murine cells [21]. Another source of intra-

cellular Ca2+ source is the lysosomal membrane, and

destabilization of the membrane by particulate matters

can lead to Ca2+ efflux from the organelle into the

cytoplasm, enabling NLRP3 inflammasome activation

[22]. Growing evidence also indicates that, besides the

intracellular stores, Ca2+ influx from the extracellular

space can also be involved in NLRP3 activation and
Figure 1

Signal 1: (Priming)

LPS

TLR4

Pore-forming
toxins Particulate

matters
P2X7-ATP

NLRP3 inflammasome priming and activation.

Signal 1 (priming, left) is mediated by the engagement of the Toll-like recep

molecules derived from microbes and leads to NF-kB-mediated upregulatio
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cytokine release, making Ca2+ influx into the cytoplasm

by different mechanisms a converging point for NLRP3

activation (Figure 1).

The Ca2+-permeable channel TRPM2 as a
specific NLRP3 inducer upon oxidative stress
Transient Receptor Potential (TRP) channel family is

one of the largest cation channel families, and most TRP

channels permeate Ca2+ [23–25]. Taking into account

sequence homology, the TRP family is divided into seven

TRP subfamilies, TRPC (canonical), TRPV (vanilloid),

TRPM (melastatin), TRPA (ankyrin), TRPP (polycys-

tin), TRPML (mucolipin), and TRPN (NOMPC). All

TRP channels share conserved transmembrane (TM)

regions containing the voltage-sensor like domain
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masome requires NEK7 and culminates in the activation of caspase-

aspase-1 also cleaves gasdermin D (GSDMD), whose active N-terminal
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(VSLD, S1–S4), the pore domain (S5–S6), and the TRP

domain following S6. However, the cytosolic domains are

drastically different among TRP subfamilies, which

implicate different cellular functions.

TRPM2 is a member of the TRPM family and possesses a

tetrameric architecture containing a large N-terminal

TRPM homology region (MHR1-4), the conserved TM

region, a rib helix, a pole helix, and a unique NUDT9

homology (NUDT9H) domain, which belongs to the

Nudix hydrolase family that hydrolyze ADP-ribose

(ADPR) to AMP and ribose-5-P [26,27]. In human

TRPM2, it was shown that the NUDT9H domain only

binds but does not hydrolyze ADPR [28��,29]; this ADPR

binding at the cytosolic domain, together with binding of

intracellular Ca2+ at the TM at a low resting Ca2+ con-

centration, can already activate TRPM2 [26]. The result-

ing TRPM2-mediated Ca2+ permeation leads to higher

intracellular Ca2+ concentration, which in turn promotes

Ca2+ binding at the TM and positively feeds back to

greater TRPM2 opening probability. Physiologically,

ADPR production is increased by intracellular ROS

levels, through degradation of poly-ADP-ribose in the

nucleus or degradation of NAD released from damaged

mitochondria in the cytoplasm [30]. As such, TRPM2 is a

crucial endogenous sensor of ROS, linking it to Ca2+

influx.

Notably, a direct link has been described between

TRPM2 and the NLRP3 inflammasome; knockout or

inhibition of TRPM2 abolished ROS-dependent NLRP3

inflammasome activation in macrophages and monocytes

[31��,32]. On one hand, ROS is considered a signal

downstream to nearly all NLRP3-activating stimuli,

which modulates NLRP3 inflammasome assembly [8];

on the other hand, TRPM2 links ROS to inflammasome

activation in immune cells, such as monocyte, neutro-

phils, and macrophages, where its expression is abundant

[33,34]. As ROS stimulates ADPR production, ADPR is a

second messenger that induces Ca2+ influx through

TRPM2 and is particularly important for inflammasome

activation (Figure 1).

Mechanism of human TRPM2 co-activation by
ADPR and Ca2+

Recent years saw the cryo-electron-microscopy (cryo-

EM) structure determination of human TRPM2

(hsTRPM2), zebrafish TRPM2 (drTRPM2), and sea

anemone TRPM2 (nvTRPM2) [28��,35�,36�]. These

structures and biochemical experiments reveal striking

differences in the gating mechanisms among the TRPM2

orthologs from different species, and we will focus our

discussions here on the hsTRPM2 structures, which were

solved in apo state, ADPR-bound state, and ADPR/Ca2

+-doubly bound state [28��]. The hsTRPM2 structures

display an overall architecture of three tiers (Figure 2).

The top/TM tier contains pre-S1, S1–S4 VSLD, and
www.sciencedirect.com 
S5–S6 gating domain and the TRP helix. The middle

tier consists of the rib helix and the MHR4 domain with

mainly stacked a-helices. The bottom/peripheral tier is

composed of N-terminal MHR1/2, MHR3, C-terminal

NUDT9H domain, and the pole helix. The TRP helix, in

particular, bridges the cytosolic domain and the TM

domain (Figure 2).

In the apo state of hsTRPM2, the C-terminal NUDT9H

domain forms extensive interactions with N-terminal

MHR domains both within the subunit (in cis) and

between the subunits (in trans) (Figure 2). Through these

interfaces, NUDT9H may restrict inter-subunit move-

ment and stabilize MHR arms (MHR1/2, MHR3, and

MHR4) in the absence of ADPR binding. In the ADPR-

bound state, large conformational rearrangements occur

at the bottom tier of the channel: the NUDT9H and

MHR1/2 domains rotate by about 27�. The rotation

disrupts the trans interactions between NUDT9H and

MHR1/2 to prime the channel for opening. In the ADPR/

Ca2+-doubly bound state, the Ca2+ ion directly engages

S2, S3, and TRP H1 helices, leading to a tilt at TRP H1

and partial melting at the S6-TRP junction to trigger the

S6 rotation for channel opening. The Ca2+-induced con-

formational change at TRP H1 is not possible without the

signal of ADPR binding, because the tightly coupled

MHR domains would not be able to tilt with TRP H1

in the presence of the trans interactions between

NUDT9H and MHR1/2 before ADPR binding. We

propose that the TRP domain acts as an allosteric center

to integrate stimulations from the TM and cytosolic

regions for gating.

Positive feedback and lack of inactivation
In contrast to hsTRPM2, the cryo-EM map of full-

length nvTRPM2 does not show density corresponding

to the NUDT9H domain, which indicates that the

NUDT9H is flexibly linked to the main body of

nvTRPM2. Moreover, it was demonstrated that the

NUDT9H domain of nvTRPM2 hydrolyzes ADPR,

whereas the NUDT9H domain of hsTRPM2 only binds

to ADPR but has no enzymatic activity [28��,29]. These

evidence suggest that nvTRPM2 and hsTRPM2 have

fundamentally different gating mechanisms. Indeed, a

recent study shows dramatic difference in the kinetics

of APDR/Ca2+-induced currents between the two chan-

nels [37�]. The ADPR/Ca2+-induced current of

hsTRPM2 accumulates slowly and shows very little

inactivation for several minutes, whereas nvTRPM2

reaches maximal current immediately followed by rapid

inactivation. The different kinetics of TRPM2 channels

in different species are likely suited for their different

biological functions. nvTRPM2 does not respond to

ROS and may function as a chemosensor, in which

inactivation is often observed. For hsTRPM2, its Ca2

+-dependent positive feedback mechanism may ensure
Current Opinion in Immunology 2020, 62:131–135
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Figure 2
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Structures and activation mechanism of human TRPM2.

In the apo state (left), the channel is in a closed conformation with S6 helix (green) forming the lower gate and NUDT9H (pink) interacting with both

MHR1/2 (cyan) and MHR3 (marine) domains in cis and the MHR1/2 domain from a neighboring subunit in trans. Upon ADPR binding (middle),

rotation of MHR1/2 and disengagement of the trans interaction prime the channel for opening. In the open conformation (right) doubly bound to

ADPR and Ca2+, the Ca2+ site directly engages S2 and S3 helices (yellow) and TRP H1 (red), leading to a tilt at TRP H1 and partial melting at the

S6-TRP junction to trigger S6 rotation and channel opening. Arrows indicate conformational transitions.
continuous cytosolic Ca2+ mobilization for inflamma-

some activation and cell death induction.

Concluding remarks
Human TRPM2 has been implicated in inflammatory

diseases, neurological disorders, and cancers, although it

is yet to be discovered whether the TRPM2/NLRP3 axis

is responsible for these serious diseases. Nevertheless,

TRPM2 is an attractive therapeutic target for human

disease modulation. Tremendous progress has been made

recently on the mechanism of TRPM2 function. How-

ever, there are still many missing pieces on the structure,

biology and regulation of the TRPM2 channel. Further

studies are needed to help us better understand this

sophisticated cation channel and substantially speed up

the development of TRPM2-targeting therapies.
Current Opinion in Immunology 2020, 62:131–135 
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